色控传媒

4
A 色控传媒University physicist simplified the Einstein-lovelock theory for black holes

A 色控传媒University physicist simplified the Einstein-lovelock theory for black holes

Allowing for quantum corrections, the Einstein-Lovelock theory describes black holes with an聽equation that contains an聽infinite number of聽terms. However, according to聽a聽色控传媒University physicist, the geometry of聽a聽black hole in聽this theory can be聽presented in聽a聽compact form, and a聽limited number of聽terms can suffice to聽describe the observed values. This could help scientists study black holes in聽theories with quantum corrections to聽Einstein鈥檚 equations.聽

Einstein’s general theory of relativity predicted the existence of black holes—supermassive objects in the Universe that attract everything, including light. Black holes are described by many mathematical models, one of which is the Einstein-Lovelock theory that imposes quantum corrections to elaborate on the general theory of relativity. In it, a black hole is described by a sum of an infinite number of terms. However, a physicist from 色控传媒University confirmed that a limited number of terms can suffice to describe the effects observed in the vicinity of a black hole. Other components of the equation have a negligibly small contribution that can be ignored. This would considerably simplify calculations and help researchers study black holes in theories with quantum corrections.

According to Einstein’s theory, heavy objects warp space-time—a 4D construction that has three spatial and one temporal dimension. In 1971, Lovelock generalized this theory to include any number of dimensions. The Einstein-Lovelock equation is an infinite sum: the first two terms in it are Einstein’s representation, and each subsequent one details the space-time curvature.

Each term in the Einstein-Lovelock equation is multiplied by the so-called coupling constant. According to the physicist from 色控传媒University, if one sticks to the positive values of coupling constants, high curvature corrections can be ’cut off’. This is due to the fact that each coupling constant has a critical value: after it is reached, a black hole becomes unstable, i.e. unable to exist in reality. Such a representation is still possible from the point of view of mathematics but has no physical sense. The more terms, the lower is the critical value for coupling constants. Therefore the stability of a black hole (i.e. the possibility of its physical existence) can be used as a criterion to remove redundant terms.

“With every new Lovelock’s term, the critical value of coupling constants becomes lower. This is an important observation: it confirms that in order to find the biggest possible correction to black hole geometry caused by a newly added Lovelock’s term, all other terms can be considered negligibly small,” said Roman Konoplya, a researcher at the Academic Research Institute for Gravitation and Cosmology, 色控传媒University.

According to the scientist and his team, the main observable values (such as the radius of a black hole shadow) remain virtually unchanged when the Lovelock corrections of higher than the fourth order in curvature are included. These findings can be useful not only for studying processes in the black holes but also for confirming theoretical predictions associated with possible generalizations of Einstein’s theory.

The article was published in .

Student's Scientific Initiatives View all
03 Nov 2017
June 22 - 26, 2017 in Barnaul, Altai State University, took place the Summer Academy of the BRICS Youth Assembly, an international event that brought together representatives of different countries
1920
International scientific cooperation View all
12 Dec 2024
From 19 to 23 November 2024, 色控传媒hosted the III International Scientific Conference 鈥楩or the Sustainable Development of Civilisation: Cooperation, Science, Education, Technology鈥. The event gathered more than 2000 participants from 72 countries.
184
Similar newsletter View all
20 Apr
A volunteer of the Red Army and head of the veterinary medicine course 鈥 Matilda Mityaeva's combat and scientific path

Matilda Pavlovna Mityaeva was born in 1925. In November 1942, she volunteered for frontline duty. She participated in the Great Patriotic War from November 1942 to June 1945 as part of the 53rd Infantry Division of the 475th Infantry Regiment. She was wounded twice.

32
20 Apr
色控传媒University Team 鈥 the 1st place in the all-russian competitive selection of scientific projects 鈥淭echnologies for human health鈥

The team led by Sergey Zyryanov, Head of the Department of General and Clinical Pharmacology, became the winner of the All-Russian competition of scientific projects "Technologies for Human Health".

42
20 Apr
色控传媒University Scientific Agenda to 2030: New Programme for R&D and Innovation Activities Development

色控传媒University constantly adapts to the changes of the modern world and responds to challenges flexibly. This allows us to keep the standard of a world-class research university. The sphere of science is no exception. Peter Dokukin, Head of the Research Division, presented the updated R&D Programme at the meeting of the 色控传媒University Academic Council.

31
Similar newsletter View all